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Minimal model for tag-based cooperation

Arne Traulsen* and Heinz Georg Schuster
Institut für Theoretische Physik und Astrophysik, Christian-Albrechts Universita¨t, Olshausenstraße 40, 24098 Kiel, Germany

~Received 17 July 2003; published 27 October 2003!

Recently, Rioloet al. @Nature~London! 414, 441 ~2001!# showed by computer simulations that cooperation
can arise without reciprocity when agents donate only to partners who are sufficiently similar to themselves.
One striking outcome of their simulations was the observation that the number of tolerant agents that support
a wide range of players was not constant in time, but showed characteristic fluctuations. The cause and
robustness of these tides of tolerance remained to be explored. Here we clarify the situation by solving a
minimal version of the model of Rioloet al. It allows us to identify a net surplus of random changes from
intolerant to tolerant agents as a necessary mechanism that produces these oscillations of tolerance, which
segregate different agents in time. This provides a new mechanism for maintaining different agents, i.e., for
creating biodiversity. In our model the transition to the oscillating state is caused by a saddle node bifurcation.
The frequency of the oscillations increases linearly with the transition rate from tolerant to intolerant agents.
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I. INTRODUCTION

The emergence of cooperation in evolving populatio
with exploitative individuals is still a challenging problem
biological and social sciences. Most theories that explain
operation are based on direct reciprocity, as the famous
ated prisoner’s dilemma@1#. Cooperation can also arise from
indirect reciprocity when agents help others only if these
known to be sufficiently altruistic@2#. In most of these mod-
els a finite population of agents is simulated, pairs of age
meet randomly as potential donator and receiver. A dona
involves some cost to the donor while it provides a larg
benefit to the receiver. Agents reproduce depending on t
payoffs after a certain number of such meetings. Obviou
selfish individuals who do not donate would quickly spre
in the population if help is not channeled towards more
operative players. If agents do not meet repeatedly—as
large population—direct reciprocity does not work. Indire
reciprocity can solve this problem when donations are gi
only to those individuals who are known as sufficiently he
ful. This mechanism effectively protects a cooperative po
lation against exploiters@2#.

Riolo et al. @3# introduced a model in which cooperatio
is not based on reciprocity, but on similarity. In this mod
donations are channeled towards individuals who are s
ciently similar to the donator. To distinguish between diffe
ent groups of individuals every agenti has a tagt iP@0,1#.
School ties, club memberships, tribal costumes, or religi
creeds are all tags that induce cooperation. In addit
agents have a tolerance thresholdTi>0, which determines
the tag interval that the agent classifies as its own group
agenti donates to another agentj if their tags are sufficiently
similar, ut i2t j u<Ti . The cost of such a donation fori is c
.0 while the benefit forj is b.c. For simplicity,b is nor-
malized to 1, since a multiplication of payoffs with a co
stant factor does not change the game. Initially, the tag
the tolerance threshold are uniformly distributed rand
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numbers. In each generation every agent acts as a pote
donor for P other agents chosen at random. Hence it is,
average, also chosenP times as a recipient. After each gen
eration each agenti compares his payoff with the payoff o
another randomly chosen agentj and adoptsTj andt j if j has
a higher payoff. In addition, every agent is subject to mu
tion. With probability 0.1 an agent receives a newt drawn
from a uniform distribution and also with probability 0.1
newT which is Gaussian distributed with standard deviati
s50.01 around the oldT. If this new T becomes smaller
than zero, it is set to 0. Obviously, it seems to be the b
strategy for an individual to donate as little as possible, i
to have a very smallT. However, the whole population
would be better off if everybody would cooperate. Th
‘‘tragedy of the commons’’ can be solved in different way
e.g., by volunteering@4–6#.

Riolo et al. solve this problem by channeling help to
wards others who are sufficiently similar to the donator.
stead of a cooperative population, the formation and deca
cooperative clusters is observed for certain parameter ra
~high P and low c, see Fig. 1!. The average tolerance of
cooperative cluster grows slowly over time. Occasionally
declines sharply. This decline occurs when the cluster is
ploited by agents that are sufficiently similar to the cluste
agents to get support, but do not help themselves. Howe
the mechanism that generates these tides of tolerance
mained unclear@7#.

Here we develop a minimal model for tag-based coope
tion, which displays these ‘‘tides of tolerance’’ if there is
net average drift towards more cooperation. We find t
these fluctuations vanish if such a drift is not included in t
model. The importance of this observation stems from
fact that if we have species that can distinguish betw
themselves and others and donate only to others with
same tag, then this would in the long run lead to a sin
group of cooperating species having a single tag. But if
introduce a small rate of biased conversions from intoler
to tolerant species, we observe a waxing and waning in t
of species with different tags. In other words, the small co
version rate leads to a coexistence of different species, w
©2003 The American Physical Society29-1
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A. TRAULSEN AND H. G. SCHUSTER PHYSICAL REVIEW E68, 046129 ~2003!
different species appear cyclically at different times. T
consitutes a new mechanism that generates biodiversity
group of competing species.

This paper is organized as follows. First, the model
Riolo et al. is simplified in order to allow an analytical trea
ment. Then the system without the effects of mutations
analyzed. Thereafter, we introduce a drift that increases
tolerance and leads to oscillations of tolerance. We show
the truncated mutations in the model of Rioloet al. also lead
to such a drift.

II. SIMPLIFIED REPLICATOR MODEL

A. Definition of the model

Here we simplify the model of Rioloet al. @3# in order to
allow for an analytical treatment. In a first step we restrict
game to only two tags, red and blue. Similarly, we allow on
two tolerances. The agents can either only donate to ot
bearing the same tag if they have zero toleranceT50 or to
every other agent (T51). This leads to four possible strate
gies. Then we allow partners to donate and to receive in
single interaction instead of defining different roles for d
nators and receivers. We end up with the payoff matrix

~Tag,T! ~Red, 1! ~Blue, 1! ~Red, 0! ~Blue, 0!

~Red, 1! b2c b2c b2c 2c
~Blue, 1! b2c b2c 2c b2c
~Red, 0! b2c b b2c 0
~Blue, 0! b b2c 0 b2c

The strategies withT51 are obviously dominated by th
strategies withT50, because the payoff of an intolera
player is always larger than the payoff of the correspond
tolerant player. There are pure Nash equilibria for the int
erant strategies~red, 0! and~blue, 0!. In addition, there is an

FIG. 1. Population dynamics for the first 500 generation of
model of Rioloet al. @3#. The average tolerance and the donati
rate—i.e., the fraction of encounters that lead to a donation—s
fluctuations. When a cooperative cluster becomes dominant, its
erance increases until the cluster becomes extinct (c50.1, b
51.0, andP53).
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evolutionary unstable mixed Nash equilibrium if these tw
strategies are used with probability1

2.
If the intolerant agents do not even cooperate within th

own group we recover the prisoner’s dilemma@8#, see Ap-
pendix A.

Instead of simulating a finite group of agents, we calcul
only the evolution of the probability that an agent uses
certain strategy. In the following,p1 andp2 are the frequen-
cies of tolerant red and tolerant blue agents, respectivelyp3
andp4 are the frequencies of the corresponding red and b
intolerant agents. Asp1

t 1p2
t 1p3

t 1p4
t 51, the state of the

system is completely determined bypt5(p1
t ,p2

t ,p3
t ). The

trajectory can therefore be visualized as a trajectory in
three-dimensional simplex shown in Fig. 2.

In order to apply standard replicator dynamics@9# we cal-
culate the mean payoffs from the payoff matrix as

P1
t 5~b2c!~p1

t 1p2
t 1p3

t !2cp4
t ,

P2
t 5~b2c!~p1

t 1p2
t 1p4

t !2cp3
t ,

P3
t 5~b2c!~p1

t 1p3
t !1bp2

t , ~1!

P4
t 5~b2c!~p2

t 1p4
t !1bp1

t ,

^P& t5(
i 51

4

pi
tP i

t ,

where P i is the payoff of the strategy with frequencypi .
Using Eq.~1! the replicator equations can be written as

e

w
l-

FIG. 2. The trajectories of the replicator dynamics move fro
the inside of the simplex onto the boundaries. The corners repre
the pure strategiespi . Arrows indicate the stability of the fixed
points at the edges. There are two stable attractors calledpred and
pblue ~dark gray! corresponding to stable lines of fixed points of E
~2!. At the top only players with red tags survive whereas at
bottom only players with blue tags can exist. The two basins
attractions of these stable attractors are separated by a planar
ratrix given by Eq.~3!. This separatrix is the basin of attraction fo
the fixed point in the Nash equilibrium indicated by a black circ
(c50.4 andb51.0).
9-2
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MINIMAL MODEL FOR TAG-BASED COOPERATION PHYSICAL REVIEW E68, 046129 ~2003!
pi
t115pi

t1pi
t b~P i

t2^P& t!, ~2!

wherei 51, . . . ,4. Hereb determines the time scale. In th
following, we setb51. Our main interest is the attractors
the system, and a modification ofb would only modify the
velocities on the attractor.

B. Fixed points and separatrix

The dynamics of the system~2! can roughly be character
ized as follows, see Fig. 2. Most initial conditions lead
fixed points where only one tag survives. The frequency
intolerant players is typically higher than the frequency
tolerant players here. There is a separatrix that divides
basins of attraction of the two tags. On one side of the se
ratrix red players will survive and on the other side bl
players. In addition, we find several fixed points on the ed
described in the following.

As in any replicator system, the mixed Nash equilibriu

pn5(0,0,12 ) is a fixed point. Here the basin of attraction
the separatrix. The separatrix shown in Fig. 2 can be ca
lated from the stability of this fixed point, which is discuss
for a more general case in Appendix B.pn is always part of
the separatrix, its normal corresponds to the eigenvectoe3
5(12c,11c,2) of the corresponding Jacobi matrixJn with
the eigenvaluel35(32c)/2.1. We find the equation

p3
s5

1

2
@12~12c!p1

s2~11c!p2
s# ~3!

for points on the separatrix. As we have@pt11(p1
s ,p2

s ,p3
s)

2pt(p1
s ,p2

s ,p3
s)#•e350, the system never leaves this pla

again.
In addition, there are two fixed lines if only one tag

present:pred5(12x,0,x) and pblue5(0,12x,0), where 0
<x<1 is the fraction of intolerant players. The stability
the fixed points on these lines depends onx. For 12x.c,
the points are unstable and intolerant players with the op
site tag can invade~see Appendix B!. Finally, there is an
unstable fixed line for a completely tolerant populationpT1

5(12y,y,0), where 0<y<1. The stability of this fixed line
is discussed in Appendix B.

So far, the system does not show any oscillation. It sim
relaxes to one of the fixed points described above. In
following section a mechanism that generates oscillati
will be discussed.

III. INTRODUCTION OF A BIASED DRIFT

In order to generate oscillations in the system we have
destabilize the attracting fixed points and force the sys
through the separatrix. This can be realized by introduc
first ad hoc a drift that increases the fraction of tolera
agents at the cost of the intolerant fraction of the same ta
we introduce such biased conversions into our model, Eq~2!
becomes

p1
t115p1

t 1p1
t ~P1

t 2^P t&!1«p3
t , ~4!
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p2
t115p2

t 1p2
t ~P2

t 2^P t&!1«~12p1
t 2p2

t 2p3
t !,

p3
t115p3

t 1p3
t ~P3

t 2^P t&!2«p3
t .

The solution of these equations shown in Figs. 4 and 5
play oscillations in tolerance. These oscillations can be c
sidered as the deterministic equivalent to the tides of to
ance in Ref.@3#.

In the model of Rioloet al. @3# such a drift is generated b
truncated mutations. The average tolerance is usually of
order of s. Therefore the truncation of negative toleranc
decreases the probability for mutations that lower the to
ance, and leads to a drift towards higher tolerances. We
peated the simulations of Rioloet al. and found that 50.0%
of the tolerance mutations increaseT while only 39.8% de-
creaseT. The average mutation increasesT by 1.331024

(c50.1, P53, average over 10 000 realizations with 30 0
generations each!. If we omit the tolerance mutations in th
model of Rioloet al., one~low! tolerance is quickly inherited
by the whole population, see Fig. 3. The majority of playe
belongs to a dominant cluster. The mean tag of this cluste
and hence the donation rate—drifts slowly due to mutatio
of the tags. Without mutations of the tags one tag is inheri
by the whole population after a short initial period. Cons
quently, the donation rate becomes 100%, and tolerance
tations do no longer influence the system.

A. Qualitative behavior

The attractor of the system~4! is shown in Fig. 4, and the
time evolution of the strategies can be seen in Fig. 5
initially all strategies are present, the system shows perio
oscillations for small« andc50.1. One tag becomes dom
nant. The fraction of tolerant players increases due to
biased conversions imposed by«.0 and intolerant players
with the opposite tag can invade and destroy the clus
giving rise to a new dominant cluster with the opposite ta
This attractor shown in Fig. 4 has essentially the whole s

FIG. 3. Population dynamics for the first 200 generation of
model of Riolo et al. @3# without tolerance mutations~left! and
without tag mutations~right!. Without tolerance mutations the do
nation rate fluctuates due to tag mutations. After less than 100
erations all players inherit the same tolerance. Without tag m
tions the donation rate quickly rises to 100% when all players h
the same tag. The fluctuating tolerance does no longer influence
system (c50.1, b51.0, andP53).
9-3
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A. TRAULSEN AND H. G. SCHUSTER PHYSICAL REVIEW E68, 046129 ~2003!
plex as a basin of attraction. Only for very small or very hi
values ofc other fixed points become stable. The system
be analyzed in two parts for«!1. Near the edgespred and
pblue, the replicator dynamics becomes irrelevant and the s
tem is mainly driven by biased conversions. Further aw
from these edges the system is driven by the replicator
namics. Here the dynamics is not altered by the biased c
versions.

Our biased conversions lead the system from an edge
is dominated by one color to an edge that is dominated
the other color. For smallc the trajectory leaves these edg
near the corners of the pure tolerant strategies, cf. Fig
However, these corners are never crossed as they are
points.

B. Fixed points

Let us now analyze the system~4! in more detail. The
fixed line pT15(12y,y,0) of Eq. ~2! is still a fixed line of
Eq. ~4!. For c,2 «, a fraction of the fixed line remain
stable, see Appendix B for details. However, as we are in
ested in«!1 the fixed line is usually unstable. Due to th
flow from intolerant to tolerant players, the edgespred and

pblue are no longer fixed. The fixed pointpn5(0,0,12 ) in the
mixed Nash equilibrium moves away from the edge for«.0

and is now given bypd5(«/c,«/c, 1
2 2«/c). The stability of

this fixed point is discussed in Appendix B.
In addition, we find two more fixed pointsps1 andps2.

For «50 they correspond to the points where the populat
with only one tag loses stability. These fixed points can
calculated analytically, see Appendix C for details. The
pansion for«!1 of ps1 is

FIG. 4. Attractor of the system~4! for c50.1. The black line is
the attractor, the gray points are the fixed points. The plane is
separatrix for«50. The arrows indicate how the biased conversio
drive the system through the separatrix to the corner with o
tolerant individuals. Here individuals with the other tag can inva
and steer the system to a corner with mostly intolerant individu
Biased conversions lead to a tolerant corner again and the c
continues~«50.01,c50.1, andb51.0).
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Due to the symmetry in the tagsps2 can easily be calculated
by exchangingp1 with p2 and p3 with p4512p12p2
2p3. As described above, we findps15(12c,0,c) for «
50. Increasing« moves it towardspd. For «5c(12c)/4
ps6 andpd collapse, herepd becomes stable.

For c,0.73 we have no fixed points that are stable in
directions. The whole simplex is essentially the basin of
traction of the attractor shown in Fig. 4.

C. Bifurcation at «Ä0

The transition from the system without biased conv
sions~i.e., «50! to the system with biased conversions c
be analyzed in detail by considering the Poincare´ map shown
in Fig. 6.

At «.0 the fixed lines where only one tag is present va
ish. This is caused by a saddle node bifurcation@10#. A fixed
line disappears at this bifurcation, and a small channe
opened through which the system moves slowly to the ot
side of the separatrix. The width of this channel is control
by «. For small« a linear dependence between« and the
oscillation frequency of the attractor is observed as show
Fig. 7. Such a linear dependence is expected in a saddle
bifurcation with linear perturbation terms«p3 and«p4 @11#.

e
s
y
e
s.
le

FIG. 5. The waxing and waning of the four different groups
agents~red agents: black, blue agents: gray, full lines:T51, and
dashed lines:T50) are caused by the following mechanism.
cluster of tolerant red agents is invaded by intolerant blue ag
who convert via directed mutations to their tolerant counterp
giving rise to a blue cluster which is then invaded by red intoler
agents. Although initially the number of red and blue tolerant age
differed only by 1%, a tiny number (0.5%) of intolerant agents
each tag is enough to generate large clusters that are segrega
time ~«50.01,c50.1, andb51.0).
9-4
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MINIMAL MODEL FOR TAG-BASED COOPERATION PHYSICAL REVIEW E68, 046129 ~2003!
In our model two small channels are opened by«.0, as
the separatrix is crossed twice in one oscillation. The re
jection in our model is caused by the replicator dynami
which drives the system to the channel of the opposite
The dependence of the oscillation frequency on the par
eter« for c50.1 is shown in Fig. 7. For values of«.0.02,
the dynamics changes. Here the fixed pointspT1 that be-

FIG. 6. The Poincare´ map of the p1 shows the ‘‘channel’’
through which the trajectory crosses the separatrix. The black l
are the function and the bisector. The distance between the fun
and the bisector has been magnified by a factor of 10. Therefore
course of iteration is drawn only schematically.A marks the point
where the separatrix is crossed due to biased conversions fromp3 to
p1. Herep1 increases further, as the fractionp4 that exploitsp1 is
still very small. For«50 the function and the bisector will match
the separatrix can no longer be crossed~«50.01, c50.1, andb
51.0).

FIG. 7. Dependence of the oscillation frequency on the muta
rate «. The squares and the triangles are the numerical values
c50.1 andc50.2, respectively. The line is a fit of the frequenci
for «<0.01. For small« the frequency increases asf 5a«b. We
found b51.003660.0003 forc50.1 andb51.002160.0002 forc
50.2. A linear dependence is expected if the perturbation is lin
in «, as in our case. For high values of« the fixed linepT1 becomes
partially stable for«5c/2 and begins to influence the system
Therefore the frequency decreases (b51.0).
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come stable for«5c/2 begin to influence the dynamical sy
tem.

D. Influence of the cost of cooperationc

Here we analyze the influence of the cost of cooperat
~c! on our system by defining different measures of order
our model and by observing the influence ofc on these mea-
sures. The donation rate is the probability that one pla
donates to another,d5^12p3(p21p4)2p4(p11p3)&. The
fraction of tolerant individuals can be measured asptol
5^p11p2&, and the asymmetry between the tags asa
5u^p11p3&2^p21p4&u. Here^•& denotes a time average. I
addition, an average over different initial conditions is ne
essary.

Figure 8 shows that these measures display changesc
'0.02, c'0.66, c'0.73, andc'0.96. We now discuss the
reasons for these transitions. Forc,« the pointspT15(1
2y,y,0) are stable fixed points. In the case of«,c,2«
only a part of this fixed line is stable, see Appendix B f
details. Forc.2« these fixed points become unstable, th
leads to a decrease of the asymmetry between tagsc
52«

For cooperation costsc.2«, the typical qualitative be-
havior is described above. The attractor of such a system
be seen in Fig. 4. For higher costsc, the intolerant players
can invade earlier as their advantage is larger. In the follo
ing we restrict ourselves to the case of«50.01. The quali-

es
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n
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FIG. 8. Influence of the costc on the donation rate~squares!, the
fraction of tolerant players~triangles!, and the asymmetry betwee
the tags~diamonds!. All symbols are averages over 10 000 initi
conditions and 100–10 000 time steps. The number of time step
taken as a uniformly distributed random number to exclude effe
resulting from changes of the oscillation frequency. The lines
the analytical results forc.0.73, see Appendix C. The fraction o
tolerant players decreases as the time intervals where the ta
invaded become longer. This has also an effect on the donation
For c'0.66 a large change of the symmetry parameter is obse
when one symmetric attractor is replaced by two attractors wh
are not symmetric. The fraction of tolerant players and the dona
rate decrease slightly atc'0.66. The donation rate and the symm
try parameter increase until the fixed pointsps6 become stable a
c'0.73. Here these parameters decrease again. Whenpd finally
becomes stable atc5(11A1216e)/2'0.96, the symmetry is
complete again~«50.01 andb51.0).
9-5
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A. TRAULSEN AND H. G. SCHUSTER PHYSICAL REVIEW E68, 046129 ~2003!
tative behavior does not change untilc'0.661. The attractor
for c50.66 can be seen in Fig. 9.

For c.0.661 the biased conversion can no longer dr
the system through the separatrix. Two different attract
are observed for different initial conditions. In the origin
model this behavior corresponds to the establishment of
cooperative cluster which becomes tolerant due to the t
cated mutations. Intolerant individuals with the other tag
to invade, but the dominant cluster becomes more intole
again and prevents an invasion. Atc'0.73 the fixed points
ps6 become stable~see Appendix C!. For higher values ofc,
oscillations are no longer observed. For one eigenvalue
the corresponding Jacobi matrixJs, we hadul1u,1 even for
smallerc. In addition, there is a pair of complex conjugat
eigenvalues that crosses the unit circle atc'0.73. Hence we
are observing a Hopf bifurcation here. Forc.0.73 the sys-
tem spins into the fixed pointsps6. For c'0.93 the imagi-
nary parts of the eigenvalues vanish. Atc5(1
1A1216e)/2'0.96, the stable fixed pointsps6 collapse
with the unstable fixed pointpd in a supercritical pitchfork
bifurcation. For higher values ofc the fixed pointpd is
stable.

IV. SUMMARY AND OUTLOOK

We developed a minimal model for cooperation based
similarity. This model shows oscillations in the population
tolerant agents as two different groups dominate the pop
tion successively. The mechanism that drives these osc
tions is a drift towards more tolerance. Without such a drif
cooperative cluster cannot be destabilized and will not g

FIG. 9. Attractor of the system~4! for c50.66. The black line is
the attractor. The gray points are the fixed points. The plane is
separatrix for«50. The arrows indicate the parts of the attrac
where it is mainly driven by the biased conversions. The sys
does no longer cross the separatrix near the edgesp11p351 and
p21p451. Near the fixed pointpd the trajectory almost close
itself. For higher values ofc there are two separated attractorsc
50.66, «50.01, andb51.0).
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way to a new cooperative cluster. In other words, the tem
rally segregated dynamical coexistence of different tags
only possible if such a drift towards more tolerance exis
Without such a drift only one species would be selected. T
is similar to the dynamical coexistence of species in
rock-paper-scissors game@12#. The drift provides a new
mechanism for maintaining a dynamical biodiversity in bi
logical systems@13#.

This mechanism prevents a single species from tak
over the whole population as it makes the dominant clus
vulnerable. Agents can therefore exploit the cluster by
cepting support without supporting the cluster. These f
riders consequently destroy the cooperative cluster ag
The cooperative cluster can only defend itself if the cost
cooperation is sufficiently high. In this case the free ride
cannot take over the whole population.

The main results do not change if the number of tags
increased. However, the analytical treatment becomes m
more complicated, as we have to deal withn21 coupled
nonlinear equations in the case ofn tags. Yet, a population
model seems to be more appropriate in the case of more
as our model shows a subsequent realization of all tags in
same order.

If one analyzes a system with a spatial distribution
agents instead of the well-mixed case described above,
observes strong segregation between tags. Tolerant pla
need to protect themselves against intolerant exploiters
building a border of intolerant agents around them. The s
tially distributed system and the strategies that help to ov
come the segregation will be discussed in Ref.@14#.
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APPENDIX A: PRISONERS DILEMMA

The introduction of ‘‘never cooperate’’ agents which d
not donate at all@15# instead of the zero-tolerance agen
eliminates the difference between tags and leads to the
off matrix

~Tag,T) ~Red,11! ~Blue, 11! ~Red, 0! ~Blue, 0!

~Red,11! b2c b2c 2c 2c
~Blue, 11! b2c b2c 2c 2c
~Red, 0! b b 0 0
~Blue, 0! b b 0 0

which describes the prisoner’s dilemma@1,8#.
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APPENDIX B: FIXED POINTS OF THE REPLICATOR
DYNAMICS

The stability of the fixed points with only one tag can
calculated as follows. Forpred5(12x,0,x) and «50, we
find the Jacobian matrix

Jred5S 11~12x!~c2x1c x! 0 ~c21!x2

c2c x 12x c x

~12x!~c2x1c x! 0 11~c21! x2
D ,

~B1!

with the eigenvaluesl151, l2512x, and l3511c2x.
The fixed point is marginally stable as long asx>c, for x
,c it becomes unstable. The reasoning can be adopted
the fixed linepblue5(0,x,0).

A fixed point that is conserved for«.0 can be found if
all players are tolerant. ForpT15(12y,y,0), the Jacobian
matrix is given by
04612
for

JT1

5S 11~c ȳ1y! ȳ 2 c̄ ȳ y2« 0

~c ȳ1y! ȳ 12 c̄ ȳ y2« 0

2 ȳ y c̄1c ȳ1« 22 ȳ y c̄2c y2« 11c y2«
D ,

~B2!

whereȳ512y andc̄512c. The eigenvalues of this matrix
arel151, l2511cy2«, andl3511c(12y)2«. l i,1
( i 51,2,3) is not possible for«50. Hence the fixed line is
unstable for«50. For «.0 there is an interval of stability
given by 12«/c,y,«/c. If this inequality and 0<y<1
are both fulfilled byy, the biased conversions ensure stabil
of the fixed point although the replicator dynamics alo
would make this point unstable. The first inequation can o
be fulfilled for c,2«. For c,« it is always fulfilled and the
whole fixed linepT1 is stable.

The fixed point given bypd5(«/c,«/c,1/22«/c) reduces
to the mixed Nash equilibrium for«50. The Jacobi matrix
at this fixed point is
an

he

(1

ints.
Jd5S 11
3 c «1«2c2

2 c

2~11c!«

2 c

~12c!~c22 «!

4 c

~11c!«

2 c
11

c «2«2c2

2 c

~11c!~c22 «!

4 c

~11c!«

c

2~11c!«

c
11

~12c!~c22 «!

2 c

D . ~B3!

The eigenvalues of this matrix are

l1512
g

2
,

l2511
g~2c21!2Ag~g18«c18«c2!

4 c
,

l3511
g~2c21!1Ag~g18«c18«c2!

4 c
, ~B4!

where g52«2c. For «50 we havel15l2512c/2,1 and l35 3
2 2(c/2).1. The third eigenvalue corresponds to

unstable direction. The corresponding eigenvector ise35(12c,11c,2), which is the normal of the separatrix for«50. In the
case of«.0 we havel i,1 for i 51,2,3 only if c.(11A1216e)/2. Hencepd becomes stable where it coincides with t
fixed pointsps1 described in Appendix C. In all other cases, at least one eigenvalue ofJd is outside the unit circle.

APPENDIX C: ADDITIONAL FIXED POINTS

Numerical simulations show that the additional fixed points for«.0 can always be found in the plane spanned by

2c,0,c), (0,12c,0), and (0,0,12 ). Together withp1
t115p1

t andp3
t115p3

t we have three equations that describe these po
Two of the solutions are fixed points not described above. The first fixed pointps1 can be written as
9-7



ps15S a1Aab22«

2c

Aab12~a2«!2~a214ab14aAab!1/2

2c
2 2 1/2

D , ~C1!

a

an be
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~12c!~c 2b22Aab!1~a 14ab14aAab!

4a

wherea5c(12c) andb5a24«. ps2 can be calculated by exchangingp1 with p2 andp3 with p4512p12p22p3. These
fixed points have only real coordinates forb>0. Forb50 we haveps15ps25pd.

The eigenvalues of the Jacobi matrix at the fixed pointsps6 can be calculated numerically. For«50.01 the fixed points are
only stable ifc.0.73. Atc5(11A1216e)/2'0.96 they collapse withpd in a supercritical pitchfork bifurcation and form
single stable fixed point.

For c.0.73 the fixed pointsps6 are the only stable attractors and the order measures described in Sec. III D c
calculated analytically. We find forc,0.96

d512p3~p21p4!2p4~p11p3!5
5a24«~11c!12Aab2~a214ab14aAab!1/2

4a
, ~C2!

ptol5p11p25
3a24«12Aab2~a214ab14aAab!1/2

2c
, ~C3!

a5up11p32p22p4u5
2a1~a214ab14aAab!1/2

2a
. ~C4!

For c.0.96 the fixed pointpd becomes stable and we findd5 1
2 1(«/c), ptol52(«/c), anda50.
ur

-

e,

. B

n,
@1# R. Axelrod,The Evolution of Cooperation~Basic Books, New
York, 1984!.

@2# M.A. Nowak and K. Sigmund, Nature~London! 393, 573
~1998!.

@3# R.L. Riolo, M.D. Cohen, and R. Axelrod, Nature~London!
414, 441 ~2001!.

@4# C. Hauert, S. De Monte, J. Hofbauer, and K. Sigmund, Nat
~London! 296, 1131~2002!.

@5# G. Szabo´ and C. Hauert, Phys. Rev. Lett.89, 118101~2002!.
@6# G. Szabo´ and C. Hauert, Phys. Rev. E66, 062903~2002!.
@7# K. Sigmund and M.A. Nowak, Nature~London! 414, 403

~2001!.
@8# H.G. Schuster,Complex Adaptive Systems~Scator-Verlag,

Saarbru¨cken, 2002!.
@9# J. Hofbauer and K. Sigmund,Evolutionary Games and Popu
04612
e

lation Dynamics ~Cambridge University Press, Cambridg
1998!.

@10# J. Guckenheimer and P. Holmers,Nonlinear Oscillations, Dy-
namical Systems and Bifurcation of Vector Fields~Springer,
New York, 1983!.

@11# H.G. Schuster,Deterministic Chaos. An Introduction~Wiley-
VCH, Weinheim, 1995!.

@12# M. Frean and E.R. Abraham, Proc. R. Soc. London, Ser
268, 1323~2001!.

@13# B. Kerr, M.A. Riley, M.W. Feldman, and B.J.M. Bohanna
Nature~London! 418, 171 ~2002!.

@14# A. Traulsen and H.G. Schuster~unpublished!.
@15# G. Roberts and T.N. Sherratt, Nature~London! 418, 499

~2002!.
9-8


